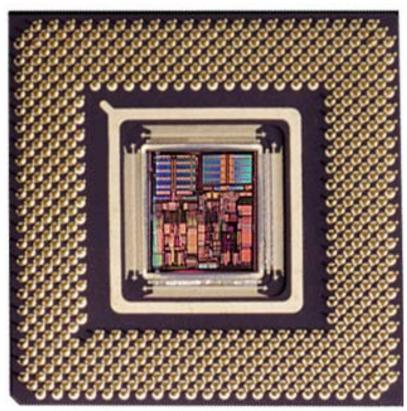
The Future of Microprocessor Architecture

Donald Alpert Stanford University Intel Corporation

The Future of Microprocessor Architecture


Outline

- Where are we?
- How did we get here?
- Where are we going?

Tokyo, April 15, 1998

Today: Alpha 21264

- 64-bit Address/Data
- Superscalar
- Out-of-Order Execution
- 256 TLB entries
- 128KB Cache
- Adaptive Branch Prediction
- 0.35 μm CMOS Process
- 15.2M Transistors
- 600 MHz

Source: Digital

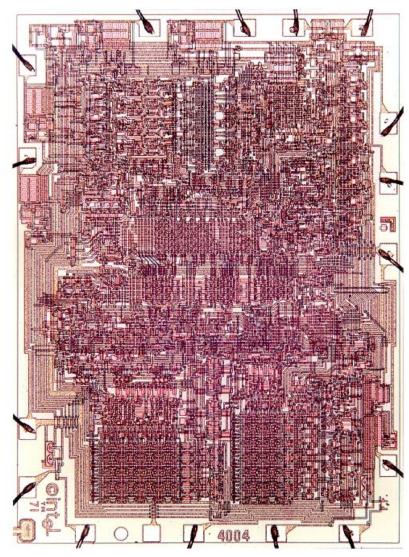
COOL Chips I

History

Technology

Functionality

Partitioning

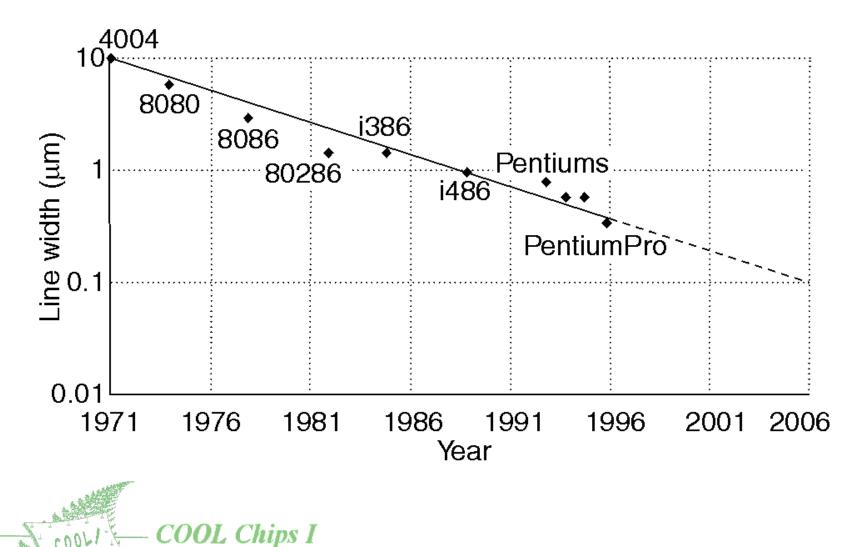

1200:

Tokyo, April 15, 1998

The Future of Microprocessor Architecture

In the Beginning: Intel 4004

- 4-bit Data
- 12-bit Address
- 8 μm PMOS
- 2300 Transistors
- 750 KHz
- 1971



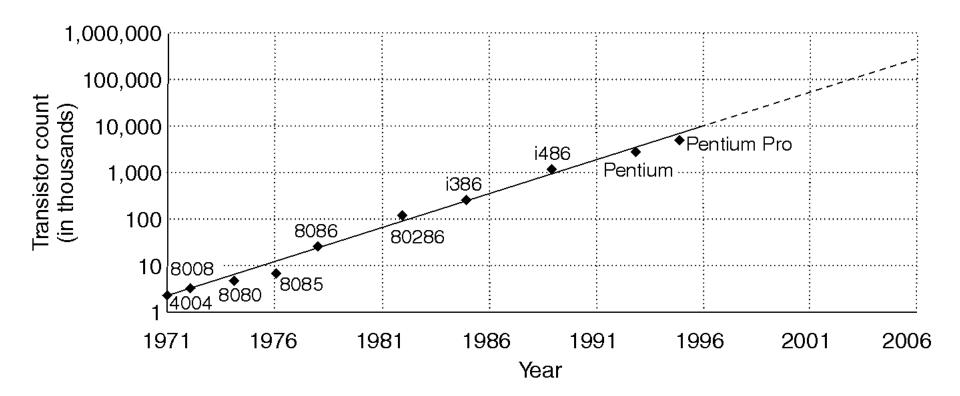
Source: Intel Don Alpert Slide 5

The Future of Microprocessor Architecture

Tokyo, April 15, 1998

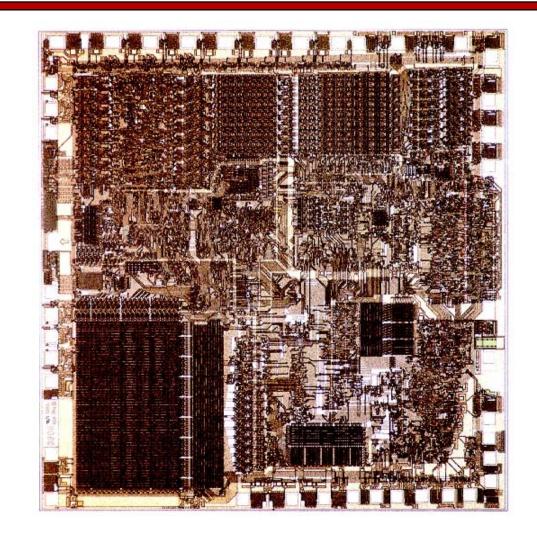
Lithography

Source: A. Yu, IEEE Micro 12/96


Die Size

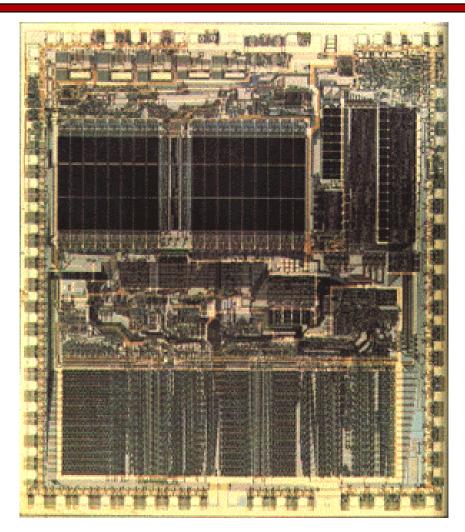
Don Alpert Slide 7

Source: Intel


Transistor Count

Source: A. Yu, IEEE Micro 12/96

- 8-bit Data
- 16-bit Address
- 6 μm NMOS
- 6K Transistors
- 2 MHz
- 1974


Intel 8080

Source: Intel

The Future of Microprocessor Architecture

Issues

- Segmented vs. Linear
 Memory Addresses
- Registers
- Addressing Modes
- Floating-Point

Motorola 68000

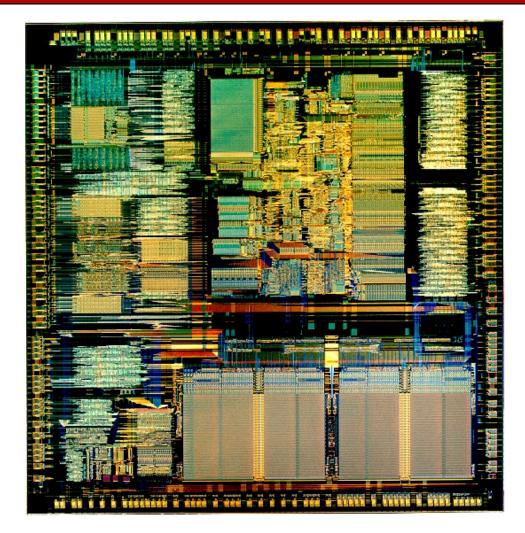
Photograph: Computer Museum

Tokyo, April 15, 1998

COOL Chips I

The Future of Microprocessor Architecture

	Intel 8086	Zilog Z8000	Motorola 68000	
Integer Path	16-bit	16-Bit	16-Bit	
Floating-Point	8087	No	Νο	
Addresses	Segment (16)	Segment (16)	Linear (24)	
OS Protection	No	Yes	Yes	
Memory Mgt.	No	Segmented	No	
Cache	No	No	Νο	
Technology	3μm NMOS	4-6(?)μm NMOS	4μm NMOS	
No. Transistors	29K	17.5K	68K	
Frequency	5 MHz	4 MHz	8 MHz	
Year	1978	1979	1979	


COOL Chips I

Tokyo, April 15, 1998

0011

Issues

- Cache
- TLB
- RISC vs. CISC

Intel386 CPU

Source: Intel

The Future of Microprocessor Architecture

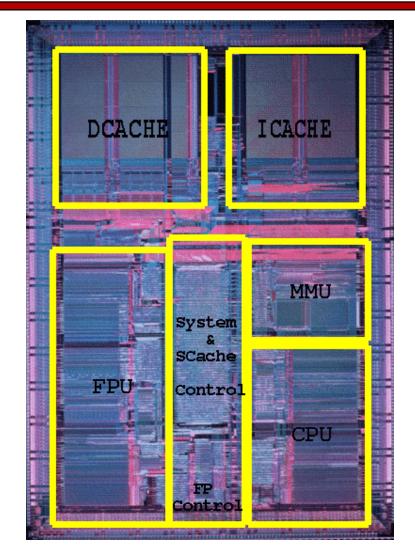
	Intel Motorola		MIPS		
	80386	68020	R2000		
Integer Path	32-bit	32-Bit	32-Bit		
Floating-Point	80387	68881	R2010		
Addresses	Seg/Linear (32)	Linear (32)	Linear (32)		
OS Protection	Yes	Yes	Yes		
Memory Mgt.	32-entry TLB	68851	64-entry TLB		
Cache	82385	256B	Controller		
Technology	1.5 μ m CMOS	$2\mu m$ CMOS	$2\mu m$ CMOS		
No. Transistors	275K	200K	100K		
Frequency	16 MHz	16 MHz	16.7 MHz		
Year	1985	1984	1986		

COOL Chips I

0011

Baseline Microprocessor

Full Functionality


- 32-bit Integer
- 64-bit Floating-Point
- Paged Virtual Memory (TLB)

Performance

- Full-Width Datapaths
- Pipelined Function Units
- 8-16KB Cache

Technology

- ~1.0 μm CMOS
- ~1M Transistors

Source:SGI MIPS

Tokyo, April 15, 1998

COOL Chips I

The Future of Microprocessor Architecture

Since Baseline Microprocessor

Technology

- 1.0 μm → 0.25 μm
- 1M Tx \rightarrow 10M Tx

Addresses/Integers

— 32b → 64b

Superscalar

- In-Order Execution
- Out-of-Order Execution
- Branch Prediction
- Cache

- Underestimate Technology Improvement Rate
- Underestimate Complexity
- Underestimate Software Development Effort
- Underestimate Market Size

Where Are We going?

What we know

What we know that we don't know

What we don't know that we don't know

Tokyo, April 15, 1998

The Future of Microprocessor Architecture

Semiconductor Technology Roadmap

	1997	1999	2001	2003	2006	2009	2012
Lithography (nm)	250	180	150	130	100	70	50
Die Size (mm²)	300	340	385	430	520	620	750
Transistors (M)	11	21	40	76	200	520	1400
Frequency (MHz) Local Clock Cross-Chip Clock	750 750	1250 1200	1500 1400	2100 1600	3500 2000	6000 2500	10000 3000
Power (W)	70	90	110	130	160	170	175
Voltage (V)	1.8-2.5	1.5-1.8	1.2-1.5	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6
I/O Pins	1450	2000	2400	3000	4000	5400	7300
Wiring Levels	6	6-7	7	7	7-8	8-9	9

Tokyo, April 15, 1998

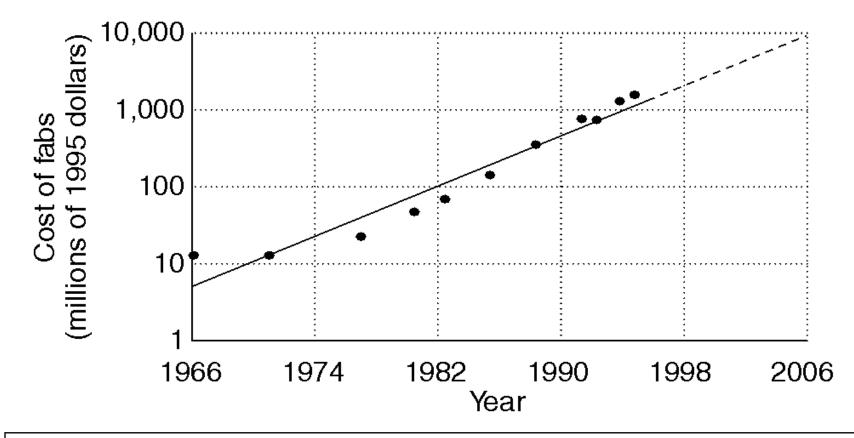
0011

COOL Chips I

The Future of Microprocessor Architecture

Source: Semiconductor Industry Association

IA-64 and Merced[™] CPU


IA-64

- Joint 64-bit architecture definition by Intel and H-P
- Explicitly Parallel Instruction Computing (EPIC)
 - Encode independent instructions
 - 128 registers
 - Predication
 - Speculation

Merced CPU

- First IA64 implementation
- 0.18 µm technology
- 1999 Production

Fabrication Facility Costs

Moore's Second Law: Fab Costs Grow 40% Per Year

Tokyo, April 15, 1998

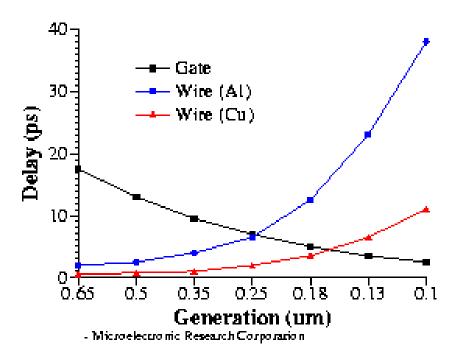
COOL Chips I

The Future of Microprocessor Architecture

Source: A. Yu, IEEE Micro 12/96

Known Challenges

- Interconnect
- Power
- Reliability
- Verification
- Mixed-Signal

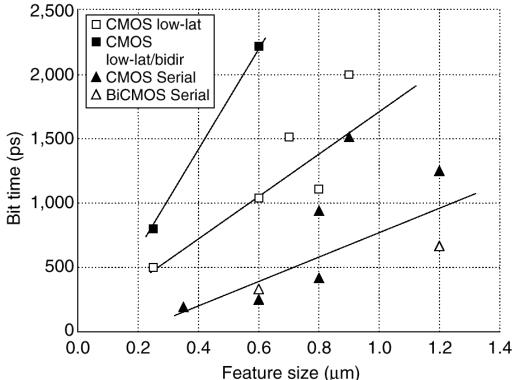

Tokyo, April 15, 1998

COOL Chips I

The Future of Microprocessor Architecture

Wire Delay Is Increasing

- Gate delay decreasing 25% per generation
- Wire delay increasing 100% per generation
- Communicate across a chip
 - 1 clock at 400 MHz in $0.35\mu m$
 - 12.4 clocks at 1 GHz in $0.1 \mu m$



Tokyo, April 15, 1998 The F

Off-Chip Data Bandwidth Is Scaling

- Achievable bit times scale with circuit speed
- Transceiver fits in the area of a (large) pad driver
- Still may need to increase number of I/O signals each generation to match logic integration

COOL Chips I

Source: M. Horowitz, IEEE Micro 1/98 and B. Dally

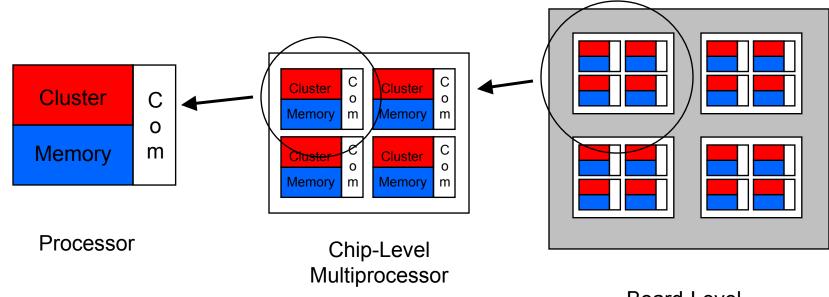
Tokyo, April 15, 1998

The Future of Microprocessor Architecture

Scalable Architecture for ULSI

Processor

- Core cluster of computational units and registers
- Memory
- Inter-processor communication unit


Technology Properties

- Local interconnect for highest-frequency cluster
- Shrink and replicate processors for higher integration

Programming Properties

- Replicate chips of multiprocessors for higher performance
- Consistent latencies in clocks across generations

Scalable Architecture for ULSI

Board-Level Multiprocessor

Tokyo, April 15, 1998

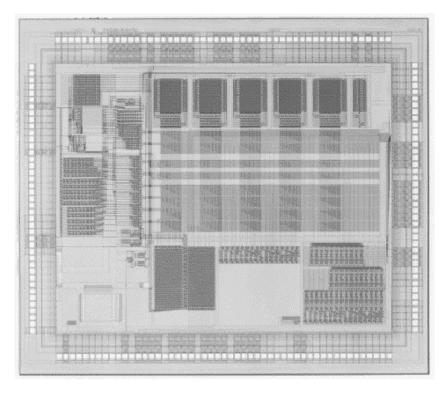
0011

COOL Chips I

The Future of Microprocessor Architecture

Microprocessor Architecture Research

- Wave Pipelining
- Multithreaded Processors
- Single-Chip Multiprocessors
- Vector/Stream Processors
- Intelligent RAM
- Reconfigurable Computing


Wave Pipelining

Sub-Nanosecond Arithmetic Processor (SNAP)

— Prof. Mike Flynn at Stanford

Wave Pipelining

- Uses minimum propagation delay (T_{min}) to store data in combinational logic paths
- Conventional pipeline limited by maximum delay path (T_{max})
- Wave pipeline limited by difference in delay (T_{max} - T_{min})
- Potential 2-3X performance improvement in CMOS with comparable cost to conventional pipelining

CMOS Wave-Pipelined Vector Unit

COOL Chips I

Tokyo, April 15, 1998

Multithreaded Processors

Simultaneous Multithreading (SMT) Processors

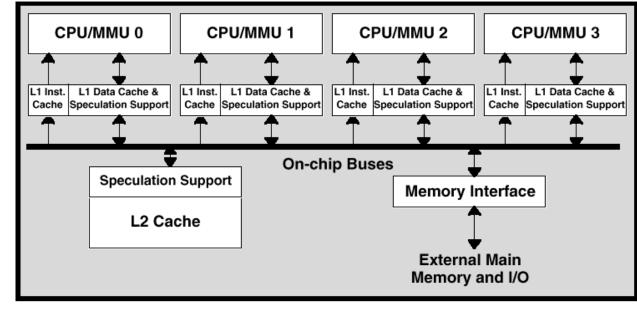
- Prof. Susan Eggers et al at University of Washington
- Targets fine-grain multithreaded applications/workloads

Based on a Dynamic, Superscalar Processor

- Add IDs for multiple (8) threads to registers/structures
- Function units are scheduled dynamically with data-ready instructions from multiple threads

Multi-ported Instruction Cache

- Fetch from two threads simultaneously
- Priority to threads with fewest instructions in pipe


Potential 2X Performance Improvement

- For incremental cost vs. conventional superscalar

Single-Chip Multiprocessors

Hydra Project

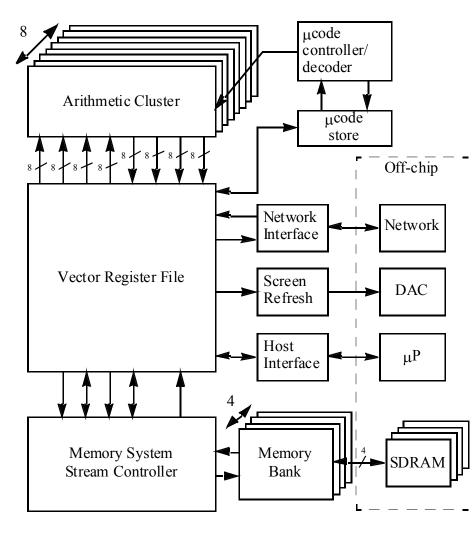
- Prof. Kunle Olukotun at Stanford
- Targets thread-level parallelism
- 4 CPUs on a Chip
- 3-Level Cache Hierarchy
- Parallelizing Compiler Technology

COOL Chips I

:0011

Vector/Stream Processors

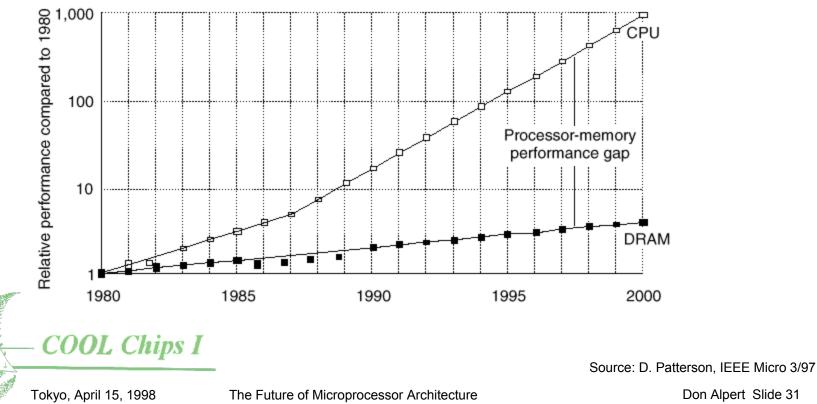
Imagine Project


- Prof. Bill Dally at Stanford
- Targets Graphics and Signal Processing

Arithmetic Clusters (8)

- Multiple interconnected-ALUs
- Local registers
- Statically scheduled operations and bus usage

Memory Streams


- Arrays of multimedia structures
- Multiple SDRAM banks
- Vector register file
 - 16K words
 - 18 streams

Intelligent RAM

IRAM

- Prof. Dave Patterson at U.C. Berkeley
- Target latency/bandwidth gap between CPU and DRAM
- Integrate DRAM with Conventional CPU
- **Specialized Processor Exploits On-chip DRAM Bandwidth**

Reconfigurable Computing

Adaptive Computing Systems

- DARPA program
- Target FPGAs for high-performance programmable HW

Improved Performance Over Programming SW

- 10X over DSP
- 100X over general-purpose microprocessor

Cost 2X Over ASIC at Comparable Performance

Potential Applications

- Pattern matching (image recognition)
- Encryption
- Signal processing

Predictions for Cool Chips X

No "Cool" Technology

- But power managed at all design levels

Systems on Chips

- Integrated application solutions
- Majority of transistors for memory
- Multiple, heterogeneous processors
- Mixed-signal applications
- On-chip bus standards
- On-chip interconnection networks

Unlikely

- Optical interconnect
- Reconfigurable computing